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INTRODUCTION: Humans are the only bipedal
great apes, owing to our distinctive skeletal form.
Morphological changes that contribute to our
skeletal form have been studied extensively in
paleoanthropology.With the exception of stand-
ing height, examining the genetic basis for dif-
ferential and specific growth of individual bones
and their evolution has been challenging be-
cause of limited sample sizes.

RATIONALE: One approach to studying skeletal
form is to obtain a map of regions in the ge-
nome that affect skeletal development and mor-
phology. Previously, this has been examined
mainly through animal models and compara-
tive genomics, but these approaches are largely
low throughput. A complementary approach
is to examine the genetic basis of variation in
skeletal traits in humans. In this work, we ap-

plied deep-learning models to 31,221 full-body
dual-energy x-ray absorptiometry (DXA) images
from the UK Biobank to extract 23 different
image-derived phenotypes that include all long-
bone lengths and hip and shoulder widths,
which we analyzed while controlling for height.

RESULTS:All skeletal proportions (SPs) arehigh-
ly heritable (~30 to 50%), and genome-wide as-
sociation studies of these traits identified 145
independent loci. These loci are enriched ingenes
that regulate skeletal development aswell as those
that are associated with rare human skeletal dis-
eases and abnormalmouse skeletal phenotypes.
Genetic correlationandgenomic structural equa-
tion modeling indicated that limb proportions
exhibited strong genetic sharing but were genet-
ically independent of width and torso proportions.
Phenotypic and polygenic risk score analyses
identified specific associations between osteo-
arthritis of the hip and knee, which are the lead-
ing causes of adult disability in theUnitedStates,
and SPs of the corresponding regions. We also
found genomic evidence of evolutionary change
in arm-to-leg and hip-width proportions in hu-
mans, consistentwithnotableanatomical changes
in these SPs in the hominin fossil record. In con-
trast to cardiovascular, autoimmune, metabolic,
and other categories of traits, loci associated
with these SPs are significantly enriched both in
human accelerated regions and in regulatory
elements of genes that are differentially ex-
pressed in humans and the great apes through-
out development.

CONCLUSION:Ourworkvalidates theuseof deep-
learning models on DXA images to identify spe-
cific genetic variants that affect thehuman skeletal
form. It also ties a major evolutionary facet of
human anatomical change to pathogenesis.▪
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The genetic basis, evolution, and health con-
sequences of human skeletal traits. (A) Measure-
ment of SPs using a deep learning–based landmark
estimation method on full-body DXAs. (B) Location of
loci that localize to a single protein-coding gene
and are associated with various SPs, colored according
to the scheme in (A). (C) Significant phenotypic and
genetic associations of various SPs with musculo-
skeletal disease or joint pain. Number notations in
parentheses are the ICD-10 (International Classification
of Diseases, Tenth Revision) codes associated with each
disease. OA, osteoarthritis; TFA, tibiofemoral angle.
(D) SPs with genomic evidence of human-specific
evolution. Illustration was created with
BioRender.com.
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The human skeletal form underlies bipedalism, but the genetic basis of skeletal proportions (SPs)
is not well characterized. We applied deep-learning models to 31,221 x-rays from the UK Biobank
to extract a comprehensive set of SPs, which were associated with 145 independent loci
genome-wide. Structural equation modeling suggested that limb proportions exhibited strong genetic
sharing but were independent of width and torso proportions. Polygenic score analysis identified
specific associations between osteoarthritis and hip and knee SPs. In contrast to other traits,
SP loci were enriched in human accelerated regions and in regulatory elements of genes that are
differentially expressed between humans and great apes. Combined, our work identifies specific
genetic variants that affect the skeletal form and ties a major evolutionary facet of human
anatomical change to pathogenesis.

H
umans are the only primates who are
normally bipedal, owing to our distinc-
tive skeletal form, which stabilizes the
upright position. Bipedalism is enabled
by specific anatomical properties of the

human skeleton, including shorter arms rela-
tive to legs, a narrow body and pelvis, and the
orientation of the vertebral column (1–3). These
broad changes to skeletal proportions (SPs)
likely began to occur around the separation
of the human and chimpanzee lineages, and
as a result, may have facilitated the use of tools
and accelerated cognitive development (4, 5).
Fossil evidence showing major morphological
changes in the length of the limbs, torso, and
body width suggest that these changes were
gradual, with incremental development over
the course of severalmillion years (6, 7).However,
despite more than a hundred years of effort in
paleoanthropology documenting morphological
changesof the skeletal form inhumanevolution,
evidence of genomic change has been elusive.
In developmental biology, the mechanisms

and processes underlying animal limb develop-
ment, morphology, and broad body plan have

been studied extensively. Early work using
forward genetic screens in Drosophila iden-
tified homeobox genes as key regulators of
anatomical development in invertebrates (8).
Subsequent experiments in vertebrates, includ-
ing fish, chickens, andmice, identified addition-
al gene families that are crucial in the regulation
of skeletal development and form (9, 10).
Comparative genomic and evolutionary devel-
opmental biology approaches have produced
several insights into the genetic basis of skel-
etal structure, from the underpinnings of conver-
gent limb loss in snakes and limbless lizards
(11, 12) to increased limb lengths in jerboas
when compared withmice (13). However, these
approaches do not provide an unbiased and
comprehensive map of the genetic loci that
regulate SPs and overall body plan. In addition,
many of these approaches largely focus on
examining the impact of loss-of-functionmuta-
tions, which often have widespread effects on
the entire skeleton. The subset of genes re-
sponsible for differential and specific growth
of individual bones remains unknown.
Genome-wide association studies (GWASs)

of human skeletal traits are a direct and comple-
mentary approach to characterizing the genetic
basis of traits. Twin studies suggest that the
heritability of SPs range between 0.40 and 0.80
(14), similar to the heritability of standing
height (15), a skeletal trait that has served as an
exemplary quantitative trait in humangenetics.
Meta-analysis of more than 5 million individu-
als has identified a saturated map of common
genetic variants that are associated with stand-
ing height (16). However, height is among the
most straightforward and accurate of quantita-
tive traits to measure. Other skeletal elements,
such as limb, torso, and shoulder lengths, are

not typically or comprehensively measured in
large sample sizes (17, 18). As a result, the
genetic basis of such proportions and lengths
remains understudied. Furthermore, anthropo-
metric traits, like hip andwaist circumferences,
are measured externally and therefore are in-
trinsically tied to body-fat percentage and dis-
tribution, which fails to isolate genetic effects
specific to the skeletal frame (19, 20).
Applying deep-learning methods to non-

invasive medical imaging is a powerful way
to extract skeletalmeasures in an accurate and
scalable manner. Furthermore, the collection
of genetic, phenotypic, and imaging data by
national biobanks provides an opportunity to
runGWASs for image-derived phenotypes (IDPs)
with sufficiently large sample sizes. Several ge-
netic studies have successfully applied com-
puter vision to generate IDPs of the retina,
distribution of body fat, heart structure, and
liver-fat percentage and have linked signifi-
cant loci to various disorders (21–24).
In the context of musculoskeletal disease,

epidemiological data suggest that disorders
such as osteoarthritis (OA), the leading cause of
adult disability in the United States (25, 26),
are thought to be influenced by a variety of risk
factors that range across obesity, mechanical
stresses, genetic factors, and even the geometric
structure of certain bones (27). Although some
small studies have examined the relationship
of certain skeletal element lengths such as
leg-length discrepancy and OA (28), how the
skeletal frame may exacerbate an individual’s
development of osteoarthritic disease has not
been fully studied (27, 29).
In this study, we applied methods in com-

puter vision to derive comprehensive human
skeletal measurements from full-body dual-
energy x-ray absorptiometry (DXA) images at
biobank scale. We then performed genome-
wide scans on 23 generated phenotypes to
identify loci associated with variation in the
skeletal form. Using summary statistics from
these IDPs, we identified biological processes
linked with human SPs and studied the pheno-
typic and genetic correlation between these
measures and a range of external phenotypes,
with an emphasis on musculoskeletal dis-
orders. Finally, we investigated the impact of
natural selection on these traits to understand
how skeletal morphology is linked to human
evolution and bipedalism.

Results
A deep-learning approach for quality control and
quantification of biobank-scale imaging data

To study the genetic basis of human SPs, we
jointly analyzed DXA and genetic data from
42,284 individuals in the UK Biobank (UKB).
Individuals from this dataset are between 40
and 80 years old and reflect adult skeletal
morphology. We report baseline information
about our analyzed cohort in (30) and in table
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S1. We acquired 328,854 DXA scan images
across eight imaging modalities comprising
full-body transparent images, full-body opaque
images, anteroposterior (AP) views of the left
and right knees, AP views of the hips, and AP
and lateral views of the spine. For quality con-
trol (QC), we first developed a deep learning–
based multiclass predictor to select full-body
transparent images from the pool of eight total
imaging modalities. We developed a second
deep-learning classifier to remove cropping
artifacts. Finally,we excluded imageswith atyp-
ical aspect ratios and padded them to uniform
sizes (30) (Fig. 1A). After our QC process, we
were left with 39,469 images for analysis.
After image QC, we manually labeled 14

landmarks at pixel-level resolution on 297
images for use as training data. These labels
were independently validated by an orthope-
dic team. The 14 landmarks include the major
joints—the wrist, elbow, shoulder, hip, knee,
and ankle—and the position of each eye. The
segments connecting these landmarks reflect
natural measurements for long-bone lengths
or body-width measures. We assessed the rep-
licability of manual annotation by inserting 20
duplicated images from the 297 training images
without the knowledge of the annotator and
found that repeat measurements resulted in a
difference of less than 2 pixels at any landmark
(30) (Fig. 1B).
We adapted and applied a new computer vi-

sion architecture, High-ResolutionNet (HRNet),
for landmark estimation, or the prediction of the
location of human joints (31). There are four
main reasons why we chose HRNet. First,
HRNet maintains high-resolution represen-
tations throughout the model (30), and we
wanted to use the high-resolution medical
images produced by the DXA scanner to ob-
tain precise measurement information of bone
lengths. Second, the architecture had already
been trained on two large imaging datasets,
first on imageNet (32), a general natural image
dataset, and then subsequently on Common
Objects in Context (COCO) (33), a dataset of
more than 200,000 images of humans in natu-
ral settings with joint landmarks classified.
These two previous layers of training enabled
us to perform transfer learning to fine-tune
the architecture on our training data and reduce
the total amount of manual annotation to just
297 images. Third, HRNet has among the best
performance for a similar task of labeling
human joints on two large-scale benchmarking
datasets of human subjects (33, 34). Finally, we
directly compared the performance of the
HRnet architecture with a more traditional
architecture on our dataset (ResNet-34) (35)
and obtained significantly better results across
different training parameter choices (30) (table
S2). Upon training, the model achieved greater
than 95% average precision on hold-out vali-
dation data across all body parts (table S2).

Validation of human skeletal length estimates
After training and validating the deep-learning
model on the 297 manually annotated images,
we applied this model to predict the 14 land-
marks on the rest of the 39,172 full-body DXA
images. We then calculated pixel distances
between pairs of landmarks that corresponded
to seven bone and body-length segments (30)
(Fig. 1B and table S3). We also computed an
anglemeasure between the tibia and the femur
(tibiofemoral angle, or TFA) (Fig. 1B). To stan-
dardize images with different aspect ratios, we
rescaled pixels into centimeters for each image
resolution by regressing the height in pixels
against standing height in centimeters asmea-
sured by the UKB assessment (30). We then
removed individuals with any skeletal measure-
ments that were more than four standard de-
viations from the mean.
After outlier removal, we validated the accu-

racy of our measurements on the remaining
samples in four ways. First, the error rate for
segment length from themodel comparedwith
manual annotation was, at maximum, 3 pixels
or 0.7 cm, which is similar to the variation from
manual annotation of the 20 duplicate images.
Reliability (100% variance in measurement di-
vided by variance of a segment length) was
greater than 95% across all length measures
(30) (Fig. 1C and tables S4 to S6). Second, the
correlation between long-bone lengths and
height as measured in the UKB was around
~0.88, which falls within the expectation ob-
served in the literature (17) (Fig. 1D). Third, the
correlation between left and right limb lengths
was greater than 0.99 (Fig. 1E). Fourth, a sub-
set of 667 individuals had undergone repeat
imaging an average of 2 years apart, with dif-
ferent image aspect ratios, DXAmachines, soft-
ware models, and technicians carrying out the
imaging (Fig. 1F). The correlation in these tech-
nical replicates across skeletal elements was also
greater than 0.99. Taken together, these results
suggest that the IDPs from our deep-learning
model are highly accurate and highly replicable.

Characteristics and correlations of human SPs
with sex, age, and height

From the seven bone and body length segments,
we examined these IDPs as proportions instead
of lengths (or to control for variation in overall
height, which is highly correlated with each of
these lengths) by taking simple ratios of each
IDP with overall height (30) (Fig. 1B). We also
carried out this normalization analysis in
alternate ways, including using height as a co-
variate in association tests as well as regressing
each IDPwith height and obtaining residuals.
All three approaches were highly correlated,
and we used the simple approach of taking
proportions formost analyses (30). As expected,
this greatly reduced the overall correlation of
our traits with height (table S7). In addition to
obtaining ratios of each segment length with

overall height, we also computed ratios of seg-
ments with each other and obtained a total of
21 different ratio IDPs along with the angle
measure (TFA) (table S3). These ratios are
referred to in the text as Segment:Segment (Hip
Width:Height, Torso Length:Legs, and so on).
We then examined differences in SPs across

sex and age. In linewithwell-knownobservations,
Hip Width:Height (Student’s t test p < 10−15)
and Torso Length:Height (Student’s t test p <
10−15) were significantly larger inwomen than in
men (36), but we also observed that Humerus:
Height was also significantly larger in women
than inmen (Student’s t test p = 1.45 × 10−5) (30)
(table S8). In addition, we found that all body
proportions vary slightly but significantly as a
function of age (30) (table S9). We also exam-
ined how body proportions vary as a function of
overall height and found that Torso Length:Legs
decreases with height [Pearson correlation (r) =
−0.21], suggesting that increases in height are
drivenmore by increasing leg length rather than
torso length (Fig. 2A). Arms:Legs also decreases
with height (r = −0.02), meaning that leg length
also outpaces arm length as height increases.
Within each limb, for both arms and legs, lower
to upper limb ratios (Tibia:Femur, Forearm:
Humerus) increase with overall limb length.
These increases also correspond with correla-
tionswith height, with Tibia:Femur increasing
when height increases (r = 0.12).

GWASs of human SPs

We performed GWASs using imputed geno-
type data in the UKB to identify variants asso-
ciated with each skeletal measure. We applied
standard variant and sample QC and focused
our analyses on 31,221 individuals of white
British ancestry, as determined by the UKB
genetic assessment, and 7.4 million common
biallelic single-nucleotide polymorphisms (SNPs)
with minor allele frequency >1% (30, 37)
(tables S1 and S10). We used BOLT-LMM (38)
to regress variants on each skeletal measure
using a linear mixed-model association frame-
work. After generating summary statistics for
each skeletal measure, we estimated SNP
heritability using LD Score regression (LDSC)
(39) andGCTA-REML (40). All traitswere highly
heritable, with SNP heritability between 23
and 53% for LDSC and between 17 and 50%
for GCTA-REML (tables S11 and S12). We de-
tected inflation in test statistics in our quantile-
quantile (QQ) plots (mean inflation, l = 1.20);
however, minimal deviation of univariate LDSC
intercepts from 1.0 suggested that this inflation
was consistent with polygenicity rather than
confounding (30) (Fig. 3B).
In the seven SPs as a ratio of height (Forearm:

Height, Humerus:Height, Tibia:Height, Femur:
Height,HipWidth:Height, ShoulderWidth:Height,
Torso Length:Height) and TFA, we identified
223 loci atp<5×10−8and150 lociatp<6.25×10−9

(Bonferroni correction for eight traits). Of these
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Fig. 1. Deep learning–based image quantification. (A) QC process. Deep
learning–based classifiers were used to select full-body images from a pool of
DXA images of different body parts, as well as to remove images with artifacts,
resolution, or cropping issues. Full-body images were then padded to standardize
image pixel size before phenotyping (the image presented here shows padding of
5 pixels on each side). (B) Image quantification. Deep learning–based image
landmark estimation using the HRNet architecture is shown. During this process,
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model to perform automatic annotation of landmarks on the rest of images
in the dataset from which measurements of skeletal length and other
measurements were calculated. (C) Average HRNet measurement error when
compared with human-derived measurements of the tibia across 100 validation
images. (D) Correlation of length measurements and height. (E) Correlation
between left- and right-side measurements of the femur, humerus, forearm,
and tibia. (F) Correlation of lengths measured from the first and second
imaging visits for the same individual.

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at B

oston C
hildren's H

ospital on July 27, 2023



loci, 145 are independently significant [linkage
disequilibrium (r2) < 0.1] across all eight pheno-
types (92 after Bonferroni correction for eight
traits). Of the 145 independent loci, 37 loci are
only significant in SPs after conditioning on
all SNPs discovered in a saturated GWAS for
height (16, 30) (table S13). As a sensitivity anal-
ysis, we also examined the genetic effect of
skeletal lengths before and after height adjust-

ment and found that 95% of genome-wide
significant loci had the same direction of effect
when carrying out GWASs in these alternate
ways (30).

Genetic correlations and factor analysis of SPs

We calculated the genetic correlation between
each pair of traits to investigate the degree of
genetic sharing between each skeletal measure.

Estimates from LDSC and GCTA-REML were
virtually identical (fig. S10); in this work, we
report estimates fromGCTA-REML. Limb pro-
portions had positive genetic correlations with
each other (rg = 0.34 to 0.55). Upper arms and
legs (Humerus:Height–Femur:Height rg = 0.55,
p = 1.59 × 10−66) and lower arms and legs
(Forearm:Height–Tibia:Height rg = 0.51, p =
6.01 × 10−50)were significantly more correlated
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than upper arms and lower legs (Humerus:
Height–Tibia:Height rg = 0.38, p = 5.18 × 10−23)
or lower arms and upper legs (Forearm:Height–
Femur:Height rg = 0.34, p = 1.49 × 10−18). Body-
width proportions, Hip Width:Height and Shoul-

der Width:Height, were largely uncorrelated
with limb-length proportions (30). No corre-
lations involving any pairwise combination of
arm and width traits were significant (the
minimum p value across all such correlations

was ≥0.0022, which was above our Bonferroni
threshold). Correlations between leg andwidth
traits were marginally significant in three out of
four comparisons, with the maximal correla-
tion (Hip Width:Height–Tibia:Height) being
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0.23 (Fig. 2B and table S13). In addition, we
also computed phenotypic correlations between
our traits, which were highly concordant with
genetic correlations (r = 0.98).
We used genomic structural equationmodel-

ing (genomic SEM) to produce an empirically
derived low-dimensional representation of the
genetic covariance structure of the individual
SPs (41).We performed exploratory factor analy-
sis to identify the likely number of factors and
built confirmatory models using odd-numbered
chromosomes for model building and even-
numbered chromosomes for validation, which
we compared using a range of model fit indices
(30). Our preferred model of the genetic co-
variance structure revealed five main factors
that governed SPs. First, we identified a single
broad factor (Skeletal factor) that represents
dimensions of genetic variation that are sta-
tistically pleiotropic; that is, genetic variation
represented in each factor contributes to varia-
tion in not just one phenotype but to variation
in multiple phenotypes (30). All limb traits [both
arms (Humerus:Height and Forearm:Height)
and legs (Femur:Height and Tibia:Height)]
load positively on this general Skeletal factor
(on which Torso Length:Height loads nega-
tively), but the arm traits additionally load on a
second factor. Torso length and body-width
traits (HipWidth:Height and ShoulderWidth:
Height) only load appreciably on trait-specific
factors (Fig. 2C). That torso and body-width
proportions do not load appreciably on either
the general Skeletal factor or the Arm factor
reinforces our observations from the pairwise
bivariate genetic correlation analysis in which
arm and leg proportions were largely inde-
pendent of torso and body-width proportions.
Moreover, the genomic SEM results produce
insights that inspection of the genetic correla-
tionmatrix by itself does not (30).We find that
genetic sharing between the two components
of leg length (femur and tibia) does not repre-
sent genetic variation specific to leg growth per
se but rather represents a more general dimen-
sion of genetic variation shared with the upper
limbs (forearm and humerus). By contrast, the
upper limbs specifically share genetic variation
with one another (as indexed by the Arm fac-
tor) above and beyond amore general dimen-
sion of skeletal limb proportions (30).

Sex-specific heritabilities and genetic
effects of SPs

Anthropometric and skeletal traits, such as hip
width, are common examples of sexual dimor-
phism. We found that for most traits, the
genetic correlation of SPs between males and
females was not statistically different from a
value of one except for TFA (rg = 0.89) (30) (fig.
S16). For five out of the seven SPs, both of the
sex-specific SNP heritabilities were greater
than the heritability estimated jointly with
both sexes (fig. S17).

To test for pervasive differences in the mag-
nitude of genetic effects, we performed sex-
specific GWASs of all the skeletal traits and
evaluated these polygenic scores in both sexes
in a hold-out dataset (30). This method had
recently been applied to examine sex-specific
effects in biobank traits (42). Across all SPs
that we tested, polygenic scores had a signi-
ficantly larger standardized effect size (standard-
ized in males and females separately) in males
comparedwith females (Student’s t test p < 1 ×
10−3 for all comparisons) (Fig. 2D). These results
are in line with previous work suggesting that
SPs, like other anthropometric traits, have clear
differences in the magnitude of sex-specific ef-
fects when compared with other quantitative
traits in the UKB (42).

Biological insights from skeletal associations

We performed gene set enrichment analyses
in 10,678 gene sets using functional mapping
and annotation (FUMA) of GWASs to identify
biological processes and pathways enriched in
each skeletal trait (30, 43). After false discovery
rate (FDR) correction (FDR < 0.05), we found
195 gene sets to be significantly enriched
across our seven skeletal traits. Several gene
sets related to developmentwere commonacross
most traits, such as skeletal system develop-
ment, connective tissue development, chondro-
cyte differentiation, and cartilage development
(table S15).
Furthermore, commonalleles associatedwith

SPs were significantly enriched in 701 auto-
somal genes linked to “skeletal growth abnor-
mality” in the OnlineMendelian Inheritance in
Man (OMIM) (44) database (p < 5.0 × 10−2) ex-
cept genes associated with torso length (p =
0.22) (tables S16 and S17). Combined, these
results indicate that common variants asso-
ciated with SPs pinpointed genes inwhich rare
coding variants contribute to Mendelian mus-
culoskeletal disorders. To determine if loci
discovered in our GWASs had been impli-
cated in previous genetic studies, we queried
the GWAS catalog (45) for each of the 145 in-
dependent SNPs in our study. As expected, the
largest overlaps were seen with anthropomet-
ric traits (table S18).
Out of the total loci identified across GWASs

(table S18), 45 loci overlapped a single protein-
coding gene within 20 kb of each clumped
region. Notably, of these 45 genes, 32 (or 71%)
resulted in abnormal skeletal phenotypeswhen
disrupted in mice using the Human-Mouse
Disease Connection database (46). Four of
these genes (COL11A1, SOX9, FN1, andAGDRD6)
were associated with rare skeletal diseases in
humans, as annotated inOMIM (table S20). In
some cases, a gene linked with a specific SP in
our GWASs resulted in a defect in the same
skeletal trait in mouse models. We found that
a common variant (rs6546231) near MEIS1, a
homeodomain transcription factor, is associated

with increased Forearm:Height. Mouse models
of MEIS−/− mice are specifically associated with
abnormal forelimb development (47). Similarly,
a common variant (rs1891308) near ADGRG6,
which encodes a G protein–coupled receptor, is
associated with increased torso length. Mice
with conditional knockouts in ADGRG6 have
spine abnormalities that reduce torso length
(48). Thus, our GWAS of SPs identifies genes
that were previously associated with skeletal
developmental biology and Mendelian skeletal
phenotypes, demonstrating the potential for
future functional and knockout studies.
Next, we conducted a transcriptome-wide

association study (TWAS) that linked predicted
gene expression in skeletal muscle [based on
theGenotype-Tissue Expression project (GTEx v.7)
(49)] with our SP GWAS. In total, we identified
30 genes that were significantly associatedwith
any one of our skeletal traits at a Bonferroni-
corrected significance threshold across the total
number of gene and trait combinations (30)
(table S21). Among the strongest TWAS asso-
ciations were PAX1 (TWAS z-score = 12.6, p =
1.31 × 10−36), a transcription factor that is criti-
cal in fetal development and is associated with
development of the vertebral column, andFGFR3
(TWAS z-score = 6.5, p= 8.52 × 10−11), a fibroblast
growth factor receptor that plays a role in
bone development and maintenance.

Genetic and phenotypic association of skeletal
phenotypes with musculoskeletal disease

To investigate the clinical relevance of human
SPs, we examined their genetic and pheno-
typic associations with musculoskeletal disease
and with joint and back pain. We used logistic
regression to examine phenotypic associations
between skeletalmorphology and thesemuscu-
loskeletal disorders (Fig. 4A) while controlling
for age, sex, bone-mineral density, body mass
index (BMI), and other major risk factors for
OA (50). We found that one standard devia-
tion inHipWidth:Heightwas associatedwith
increased odds of hip OA [p = 3.16 × 10−5, odds
ratio (OR) = 1.34]. Similarly, Femur:Height,
Tibia:Height, and the TFA, which are all skel-
etal measures of the knee joint, were associated
with increased risk of knee OA (p = 2.24 × 10−15,
OR = 1.34; p = 6.09 × 10−5, OR = 1.16; p = 1.64 ×
10−35, OR = 1.49). Femur:Height and the TFA
were also significantly associated with internal
derangement of the knee (p = 4.03 × 10−6, OR =
1.19;p= 1.43× 10−17, OR= 1.34). Pain phenotypes
for hip and knee jointswere also associatedwith
the specific SPs that make up each joint (hip
pain with Hip Width:Height: p = 8.53 × 10−5,
OR = 1.12; knee pain with Femur:Height, Tibia:
Height, and TFA: p = 8.13 × 10−6, OR = 1.09; p =
2.89 × 10−5, OR = 1.09; p = 1.66 × 10−46, OR =
1.31) (30) (Fig. 4A) (table S22).
Next, we analyzed 361,140 UKB participants

who had not undergone DXA imaging and
were of white British ancestry for predictive
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risk based on polygenic scores derived from
our GWAS on SPs on the imaged set of indi-
viduals (Fig. 4B). We generated polygenic scores
with Bayesian regression and continuous shrink-
age priors (51) using the significantly associated
SNPs and ran aphenome-wide association study
of the generated risk scores and traits, adjusting
for the first 20 principal components of ancestry
and imputed sex (30). Polygenic scores of Hip
Width:Height and TFA were associated with
an increased incidence of hip and knee OA,
respectively (p= 7.92× 10−5, OR= 1.04;p= 1.73 ×
10−4, OR = 1.04), in line with the phenotypic
associations. In addition, we also saw signif-
icant association between back pain [both
recorded on the ICD-10 (International Classi-
fication of Diseases, Tenth Revision) code and
self-reported] and Torso Length:Height (p =
5.59 × 10−5, OR = 1.05; p = 5.71 × 10−6, OR =
1.02) (table S23). Neither the OA nor the mus-
culoskeletal pain phenotypes that we tested
were significantly associated with overall height
in this analysis [phenotypic associations: 1.10 ×
10−2 < p < 8.51 × 10−1; polygenic risk score
associations: 2.17 × 10−3 < p < 3.88 × 10−1] ex-
cept for polygenic risk scores of height and
back pain (p = 5.76 × 10−10) (tables S22 and
S23). In genomic SEM analyses, we observed
similar patterns of genetic associations with
musculoskeletal diseases at the level of gen-
eral genetic factors (30) (fig. S13 and table S24).
Taken together, these analyses suggest that in-
creases in the length of skeletal elements that
are associated with the hip, knee, and back as a
ratio of overall height are exclusively associated

with an increased risk of arthritis and pain
phenotypes in those specific areas.

Evolutionary analysis

As human SPs are an important part of our
transformation to bipedalism, we next inves-
tigated whether variants associated with SPs
have undergone accelerated evolution in hu-
mans in two ways. First, following a proce-
dure by Richard et al. (52) and Xu et al. (53),
we examined whether genes associated with
SPs overlapped human accelerated regions
(HARs) more than expectation. HARs are seg-
ments of the genome that are conserved through-
out vertebrate and great ape evolution but are
notably different in humans (54). We gener-
ated a null distribution by randomly sampling
regions matched for overall gene length (30)
(Fig. 5A). For comparison, we also performed
the same analysis on summary statistics from
the ENIGMA Consortium (55) and several com-
mon quantitative and disease traits from the
UKB (table S25). Genetic signals from several
of the SP traits, in particular arm or leg length,
were significantly enriched in HARs (Arms:
Legs, Humerus:Height, Arms:Height, Hips:
Legs, Tibia:Femur, andHipWidth:Height had
FDR-adjusted p< 0.05).We also observed nom-
inal enrichment for traits related to hair pig-
mentation (FDR-adjusted p = 0.013), which has
also changed substantially in humans com-
pared with the great apes, and for schizophre-
nia (FDR-adjusted p = 1.61 × 10−34). However,
no enrichment (FDR-adjusted p > 0.05) was
observed for HARs in autoimmune disorders,

cardiovascular disease, cancer, and overall
height (Fig. 5A).
Second, we examined heritability enrich-

ment using LDSC on genomic annotations that
reflect divergence at different time points in
human evolution (Fig. 5B) following an approach
outlined in Sohail (56) and Hujoel et al. (57).
These annotations include regions that differ
in gene regulation between humans and pri-
mates through stages of early development
(58), regions that differ in expression between
adult humans andmacaques (59), and regions
that are enriched anddepleted of ancestry from
archaic humans (60, 61). We then computed
heritability enrichment, h2(C), which measures
the proportion of heritability in an annotation
set divided by the proportion of SNPs in the
annotation. In our analysis, we also simulta-
neously incorporated other regulatory elements,
measures of selective constraint, and linkage
statistics (baseline LDv2.2 with 97 annotations)
(57, 62–64) to estimate h2(C) while minimizing
bias due to model misspecification (30).
Meta-analyzing across all our SP traits, we

found enrichment in fetal human–gained en-
hancers and promoters at early time points
[7, 8.5, and 12 postconception weeks (pcw):
h2(C) = 8.08, p = 5.91 × 10−44; h2(C) = 3.60, p =
2.55 × 10−4; h2(C) = 3.65, p = 3.55 × 10−4; table
S26] but not in adults, suggesting that genes
associated with SPs are differentially expressed
in early development between apes and hu-
mans. Although we acknowledge that the anno-
tations of differentially regulated elements are
fromdeveloping brain and not skeletal tissues,
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fetal human–gained brain regulatory elements
and adult human skeletal regulatory elements
are correlated at 58% (56, 65).Moreover, we only
observed enrichment in developing, but not
adult, tissues, suggesting that the enrichment
is not driven by confounders of tissue type but
by differences in development between the two
species. As a second line of analysis, we also ex-
amined enrichment of individual traits across

the different annotations, controlling formulti-
ple hypothesis correction at the level of FDR <
0.05. Out of 21 of our SP traits (Hip Width:
Height, Hip Width:Shoulder Width, Arms:Legs,
ShoulderWidth:TorsoLength,HipWidth:Arms,
ShoulderWidth:Height, HipWidth:Legs, Shoul-
der Width:Legs, Shoulder Width:Arms), 9 were
significantly enriched at 7 pcw at FDR < 0.05
(Fig. 5C and table S27). In addition, we saw

depletion in regions of the genome that were
depleted for Neanderthal and Denisovan an-
cestry, particularly for overall leg length [h2(C) =
0.44, p = 5.89 × 10−5] (table S27). These results
were consistent with another analysis that
showed a depletion of Neanderthal informa-
tive markers in contrast with modern human
mutations, particularly for anthropometric traits
(66), and are suggestive of purifying selection.
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Fig. 5. Evolutionary analyses. (A) Shown are p values of enrichment for
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Traits below the FDR-corrected threshold (0.05) are shown in orange, and
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represent different divergence points in human evolution. Annotations repre-
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at 7 pcw) of evolutionary analysis. Illustration was created with BioRender.com.
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The proportion traits that were significantly
enriched across both types of evolutionary anal-
ysis were associated with Arms:Legs and Hip
Width ratios (Fig. 5D). These results suggest
that specific SPs, but not overall height or sev-
eral other quantitative and disease traits exam-
ined by us or Sohail (56), underwent human
lineage-specific evolution since the separation
of humans from the great apes.

Discussion

In this study, we used deep learning to under-
stand the genetic basis of skeletal elements
that make up the human skeletal form using
DXA imaging data in a large population-based
biobank. We carried out genetic correlation
and factor analysis to characterize the joint
genetic architecture of these skeletal traits.
We identified 145 independent genetic loci asso-
ciated with SPs. We then showed that OA of the
hip and knee are associated with specific SPs
that comprise each of those joints. Lastly, we
performed an analysis to link SPs with regions
of the genome that were accelerated in human
evolution, as well as regions of the genome that
were differentially regulated between great
apes and humans.
There have been concerted efforts to use the

imaging data available from the UKB, but
most of the work has focused on the magnetic
resonance imaging (MRI) modality for the
brain or heart (23, 67). Our study expands
ongoing efforts in the DXAmodality (68, 69),
which is the key modality for diagnosing mus-
culoskeletal diseases. We also extend image
analysis beyond joint-specific DXA images to
full-body images, which have not been examined
in the context of bone diseases. We demon-
strate that deep learning is useful not just in
phenotyping individuals but also as a tool for
QC at scale, including the capture of hetero-
geneous types of error modes. Automated QC
pipelines have been developed for brain and
heartMRIs from the UKB, but fewer efforts have
beenmadewith DXA images (70, 71). We show
that modification of existing deep-learning ar-
chitectures enables us to classify DXA images
by body part and filter full-body images for
quality, andwehavemade thesemodified archi-
tectures available for use on any DXA dataset.
Our work also demonstrates the importance
of having an interconnected dataset of imaging
data and physical measurements to best lever-
age biological insights; the scaling and resolu-
tion issues presented by the imaging datawould
have been impossible to correct for without
information about individual height in the bio-
bank metadata. Through transfer learning, we
also show that deep learning–based landmark
estimation can produce accurate and replica-
ble phenotypes for imaging data with limited
manual annotation. We present the final DXA
trained models, which are fast, flexible archi-
tectures that can be deployed rapidly at popu-

lation scale, enabling their utility for automated
phenotyping as imaging data becomes more
integrated into large population biobanks.
Beyond methodological improvements for

biobank-scale analysis, our results provide new
insights into musculoskeletal biology. Despite
more than a century of work in genetics in-
vestigating the development of limbs and the
overall body plan, a comprehensive genetic map
of variation that shapes the overall skeletal form
has been absent. Specifically, which genes and
how their expression regulates modular devel-
opment of the forelimb, hindlimb, and other
long bones have not been fully characterized.
Additionally, whether natural selection has
acted on these genes to alter the development
of limb proportions, thus allowing us to walk
upright, is still unknown. Our work provides
a genotype-to-phenotype map of SPs and lays
the foundation for future assays of the genes
discovered to understand how they contrib-
ute functionally to overall phenotype.
The moderate genetic correlations (a maxi-

mum of 0.55) observed between SPs indicate
genetic sharing, particularly among limb-length
traits, while also highlighting the distinctive
biology behind the growth of each element.
Our results are in line with artificial selection
experiments in mouse lines that show that
selection for tibia length increased the trait by
more than 15% across 14 generations but did
not result in significant change in overall body
mass (72), a trait that is highly correlated with
bodywidth (rg = 0.25, p = 1× 10−21) but not limb
length (rg = −0.01, p = 0.53) proportions. Thus,
our genetic correlation and factor analysis mod-
els provide insight into constraints placed
on the evolutionary trajectory of the skeletal
form both in humans and in vertebrates more
broadly.
One important issue that affects the inter-

pretation of our results is the normalization
for height for each skeletal lengthmeasure that
we obtained.We did this to look at our primary
outcome of interest: SPs that are independent
of height. Several papers have cautioned that
the interpretation of association studies per-
formed with adjustment should be carefully
considered (73, 74). Although this issue affects
virtually every GWAS that uses age as a co-
variate in the model (where age is a proxy for
survivability, a complex trait with a heritable
basis), our analysis is most similar to GWASs
conducted for BMI, a trait for which body
weight is computed as a proportion of height.
Our results largely show consistent direction
of effect for loci before and after height adjust-
ment (30). This suggests that our GWASs for
SPs are largely identifying loci that are directly
associated with overall length of particular skel-
etal elements and is confirmed by low genetic
correlation between our proportion pheno-
types and height (mean r = 0.19) (table S28).
However, aminority of these signals could still

arise from pleiotropic increases or decreases
in other skeletal elements that affect overall
height. Thus, in interpreting our results, it is
important to only view each of our phenotypes
as proportions of height rather than directly
associated with individual skeletal element
lengths themselves.
Epidemiological studies indicate that OA of

the hip and the knee frequently do not occur
together or in combination with OA in other
large joints, suggesting that local factors are
important in OA pathogenesis (75–80). Speci-
fic abnormalities in skeletal morphology are
now recognized as major biomechanical risk
factors for the development of OA (81–86).
The findings presented here of the association
between specific SPs, but not overall height,
and joint-specificOAhighlight thebiomechanical
role that these proportions play in shaping
stresses on the joints themselves and highlight
specific risk factors of clinical relevance.
Across both types of evolutionary analyses,

the most significant SP traits were those asso-
ciated with the proportions of arms and legs,
aswell as proportions of hipwidth. These results
are concordant with some of the most notable
morphological differences between humans
and the great apes, including arm-to-leg ratio as
well as pelvic shape, which enabled a transition
from knuckle-based walking to bipedalism (Fig.
5D). Numerous studies have proposed a thermo-
regulatory hypothesis that accompanied the
primary biomechanical energy efficiency hypo-
thesis to explain the evolution of these traits in
early hominin evolution as well as to explain
differences in anatomy between humans and
Neanderthals (87, 88). However, only one ex-
tremely small sample study of 20 individuals
has been conducted to attempt to test these
thermoregulatory theories (89). In this work, we
conducted a large–sample size genetic correla-
tion analysis between SPs and basal metabolic
rate as well as whole-body fat-free mass in
humans using genetic correlation (30). We found
that an increased Arms:Legs ratio was associated
with lower basal metabolic rate and lower
whole-body fat-free mass (p = 9.37 × 10−16; p =
4.05 × 10−16), in line with the theory that these
changes in early human evolution would have
also increased heat dissipation in early homi-
nins (table S28). Our results provide genomic
evidence of selection shaping some of themost
fundamental anatomical transitions that have
been observed in the fossil record in human
evolution—changes in the overall skeletal form
that confer the distinctive ability of humans to
walk upright.

Materials and methods summary

All patient data, including electronic health
record data, DXA images, and genotype data,
were obtained from the UKB (37). To perform
QC and phenotyping on 31,221 full-body DXA
images from the UKB, we modified existing
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deep-learning models (31, 35) used for classi-
fication and landmark estimation by adding
final additional training layers with limited
manual annotation.Weused classificationmod-
els to filter images that were poor in quality
or incorrectly cropped, and we used the land-
mark estimation model to extract 23 different
IDPs that include all long-bone lengths as well
as hip and shoulder width, which we analyzed
while controlling for height.
After filtering UKB participants and genotype

data for QC, we ran GWASs using BOLT-LMM
(90) for each phenotype and estimated the
heritability and genetic correlations of these
traits with each other using GCTA (91). To fur-
ther investigate the joint genetic architecture of
skeletal traits, we used genomic SEM to analyze
the genetic factor structure of the limb and body
measurements independent of height. Moving
forward, we focused our remaining analyses
on limb and body measurements as ratios of
height (30).
We used GCTA-COJO (92) followed by link-

agedisequilibrium–basedSNPpruning inPLINK
(93) to find independent loci across our SP
phenotypes, which were mapped to genes using
positional-based mapping in PLINK. We used
MAGMA (94) to run a gene set enrichment
analysis on our traits and queried the Human-
Mouse Disease Connection (46) database to
determine whichmouse phenotypes and human
diseases were associated with SP loci.
We then examined correlations of SP phe-

notypes with musculoskeletal disease through
phenotypic and polygenic risk score analyses.
First, for phenotypic analysis, we regressed the
binary outcome of disease or reported pain in
the hip, knee, and back against SPs while con-
trolling for clinically relevant covariates that
are known to affect OA (95), including age,
sex, BMI, and other factors. For polygenic risk
score analysis, we generated polygenic risk
scores for each SP with Bayesian regression
and continuous shrinkage priors (51) using the
significantly associated SNPs.We ran a logistic
or linear regression of the polygenic risk score
on traits across all individuals, adjusting for
the first 20 principal components of ancestry
and imputed sex.
Evolutionary analyses were carried out on

our SPs using two major methods. We used
S-LDSC (62) to estimate the heritability enrich-
ment for each SP in genomic annotations
marking different evolutionary periods (30).
We also scanned for elevated levels of inter-
sections between genes containing genome-
wide significant SNPs andHARs (54) through
a modified version of the method outlined in
Xu et al. (53) and Richard et al. (52). Addi-
tionalmethodological details are available in (30).
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Editor’s summary
Many skeletal changes occurred on the path to modern humans, resulting in bipedalism but also susceptibility
to musculoskeletal diseases. Kun et al. used imaging data from more than 30,000 UK Biobank participants to
characterize skeletal proportions, assessing the genetic basis of these features, as well as their relationships to each
other. They found that limb proportions are uncorrelated with body width proportions, that there are associations
between hip- and leg-related skeletal proportions and osteoarthritis, and that there is enrichment for loci associated
with skeletal proportion in genomic regions associated with human-specific evolution. This study demonstrates the
utility of using imaging data from biobanks to understand both disease-related and normal physical variation among
humans. —Corinne Simonti
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